Documentation
BiologicalOscillations.find_pin_oscillations
— Methodfind_pin_oscillations(connectivity::AbstractMatrix, samples::Int; initial_conditions=NaN)
Finds oscillatory parameter sets in a protein interaction network
Arguments (Required)
connectivity::AbstractMatrix
: Connectivity matrix of the protein interaction networksamples::Int
: Number of parameter sets to test
Arguments (Optional)
initial_conditions::AbstractVector
: Initial conditions for the ODEs provided as a vector of vectors. If not specified, the initial conditions are set to 0.5 for all variables.
Returns
pin_result::Dict
: A dictionary containing the results of the oscillatory parameter set search. Output is encoded as:
pin_result = Dict("model" => "ReactionSystem of the protein interaction network",
"parameter_sets" => "Dataframe of parameter sets",
"equilibration_result" => "Dataframe containing result metrics for the equilibration of parameter sets",
"simulation_result" => "Dataframe containing result metrics for the simulated parameter sets",)
BiologicalOscillations.pin_equilibration_times
— Methodpin_equilibration_times(model::ReactionSystem, parameter_sets::AbstractArray; equilibration_time_multiplier=10)
Calculates the equilibration times for each dataset
Arguments (Required)
model::ReactionSystem
: Model generated withprotein_interaction_network
parameter_sets::AbstractArray
: Parameter sets generated withpin_parameter_sets
Arguments (Optional)
equilibration_time_multiplier::Real
: Factor by which the slowest timescale in the parameter set is multiplied by in order to calculate the final equilibration time
Returns
equilibration_times::Array{Float64}
: Array of equilibration times
BiologicalOscillations.pin_hit_rate
— Methodpin_hit_rate(connectivity::AbstractMatrix, initial_samples::Int; target_oscillations::Int=100, max_samples::Int=1000000, max_trials::Int=5)
Estimates the hit rate of the oscillatory parameter set search in a protein interaction network
Arguments (Required)
connectivity::AbstractMatrix
: Connectivity matrix of the protein interaction networkinitial_samples::Int
: Number of parameter sets to sample in the first trial
Arguments (Optional)
target_oscillations::Int
: Target number of oscillatory parameter setsmax_samples::Int
: Maximum number of samples allowedmax_trials::Int
: Maximum number of trials allowed
Returns
hit_rate::Real
: Estimated hit rate
BiologicalOscillations.pin_nodes_edges
— Methodpin_nodes_edges(model::ReactionSystem)
Returns the node and edge count of a protein interaction network
Arguments
model::ReactionSystem
: Model generated withprotein_interaction_network
Returns
AbstractVector
: Array with 2 elements representing the number of nodes and edges
BiologicalOscillations.pin_parameter_sets
— Methodpin_parameter_sets(model::ReactionSystem, samples::Int; dimensionless_time=true, parameter_limits=Dict("α" => (1e-2, 1e2), "β" => (1e-2, 1e2), "γ" => (1e2, 1e4), "κ" => (0.2, 1.0), "η" => (1.0, 5.0)), sampling_scales=Dict("α" => "log", "β" => "log", "γ" => "log", "κ" => "linear", "η" => "linear"), sampling_style="lhc")
Creates an array of parameter sets for a protein interaction network model.
Arguments (Required)
model::ReactionSystem
: Model generated withprotein_interaction_network
samples::Int
: Number of parameter sets to be generated
Arguments (Optional)
dimensionless_time::Bool
: Iftrue
, α₁ is set to 1.0 for all parameter sets, making time dimensionless. Default value istrue
parameter_limits::Dict
: Dictionary encoding the lower and upper limit of each parameter (in the form of a tuple). Default value is
parameter_limits = Dict("α" => (1e-2, 1e2), "β" => (1e-2, 1e2),
"γ" => (1e2, 1e4), "κ" => (0.2, 1.0), "η" => (1.0, 5.0))
sampling_scales::Dict
: Dictionary with strings encoding the sampling scale for each individual parameter in a model. Accepted strings are "linear" and "log". Default value is
sampling_scales = Dict("α" => "log", "β" => "log", "γ" => "log", "κ" => "linear", "η" => "linear")
sampling_style::String
: Sampling style of the algorithm. Accepted strings are "lhc" and "random". Default value is "lhc".
BiologicalOscillations.pin_parameters
— Methodpin_parameters(model:ReactionSystem, α::AbstractVector, β::AbstractVector, γ::AbstractVector, κ::AbstractVector, η::AbstractVector)
Creates an ordered parameter vector for a model created with the protein_interaction_network
function to use in ODEProblem.
Arguments
model::ReactionSystem
: Model generated withprotein_interaction_network
α:AbstractVector
: Vector of intrinsic protein activation rates for each nodeβ:AbstractVector
: Vector of intrinsic protein deactivation rates for each nodeγ:AbstractVector
: Vector of strengths for each network interactionκ:AbstractVector
: Vector of midpoints for each network interactionη:AbstractVector
: Vector of sensitivity values for each network interaction
Note
It is assumed that parameters follow the same order as the connectivity matrix. Namely, the first node is encoded on the first row of the connectivty matrix and the first edge comes from the first nonzero element of the connectivity.
BiologicalOscillations.pin_timescale
— Methodpin_timescale(α::AbstractVector, β::AbstractVector, γ::AbstractVector)
Calculate the slowest timescale of the protein interaction network
Arguments
α:AbstractVector
: Vector of intrinsic protein activation rates for each nodeβ:AbstractVector
: Vector of intrinsic protein deactivation rates for each nodeγ:AbstractVector
: Vector of strengths for each network interaction
Returns
timescale::Real
BiologicalOscillations.protein_interaction_network
— Methodprotein_interaction_network(connectivity::AbstractMatrix)
Creates a ReactionSystem of interacting proteins based on the provided connectivity
.
Arguments
connectivity::AbstractMatrix
: A 2 dimensional matrix filled with -1, 0, and 1 values indicating the edges of the network.